

BUDDY-3 USER MANUAL

<u>การใช้งาน BUDDY-3</u>

BUDDY Version-3 เป็นเครื่องมือสำหรับใช้ในการตรวจสอบและวัดค่าการทำงาน ของเครื่องชั่งแบบอีเล็กทรอนิกส์ โดยมีคุณสมบัติดังนี้

- จอแสดงผลเป็นแบบ Graphic LCD ความละเอียด 128 x 64 Dots
- สามารถแสดงข้อความได้ทั้งอักษรไทยและอังกฤษ
- มี Backlight ช่วยให้มองเห็นได้ชัดเจนในที่มีแสดงน้อย
- มีปุ่มควบคุมการทำงาน 6 ปุ่ม
- มีช่องสื่อสารแบบอนุกรม (Serial RS-232) 1 ช่อง
- มีช่องสื่อสารแบบขนาน (Parallel) 1 ช่อง
- มีแบตเตอรี่แบบเก็บประจุใหม่ได้ในตัว
- สามารถใช้งานต่อเนื่องได้อย่างน้อย 8 ชั่วโมง เมื่อแบตเตอรี่ประจุเต็ม
- มีเครื่องป้อนไฟภายนอก (AC-DC Adaptor) ขนาด 12V 1.2A
- มีวงจรแปลงค่า Analog เป็น Digital ความละเอียด 24 Bits
- มีวงจรสื่อสารกับ Loadcell Digital แบบ RS485
- มี Laser LED สำหรับช่วยตรวจสอบ การทรุดหรือบิดตัวของแทนชั่ง
- มี Switch ป้องกันการเปลี่ยนแปรค่าตัวแปรต่างๆ ของเครื่อง
- มีฟังก์ชั่นประหยัดพลังงานสามารถตั้งเวลาปิด Backlight ได้
- สามารถแสดงค่าการวัด Analog และ Digital Loadcell เป็นหน่วยน้ำหนักได้
- สามารถแสดงค่าการวัด Analog และ Digital Loadcell เป็นหน่วย ADC ได้
- สามารถแสดงค่าการวัด Analog Loadcell เป็นหน่วย mV ได้
- สามารถติดต่อสื่อสารกับ Digital Loadcell ได้อย่างน้อย 4 ชนิด
- สามารถกำหนดค่า Address ของ Digital Loadcell ได้
- สามารถจำลองเป็น Digital Loadcell Simulator ได้
- สามารถอ่านข้อความการสื่อสารแบบ RS485 ได้
- สามารถส่งสัญญาณ Protocal รูปแบบเครื่องชั่งต่างๆ ได้ไม่น้อยกว่า 20 แบบ

- สามารถส่งค่าตารางอักษร ASC-II ได้
- สามารถทดสอบการทำงานของ Remote Display แบบ RS232 ได้
- สามารถทดสอบการทำงานของเครื่องพิมพ์แบบ RS232 ได้
- สามารถทดสอบการทำงานของเครื่องพิมพ์แบบ Parallel ได้
- สามารถตรวจวัดค่า Baud Rate สัญญาณ RS232 ได้
- สามารถตรวจจับ แสดง และบันทึก ข้อมูลจากสัญญาณ RS232 ได้
- สามารถ Calibrate ค่าสัญญาณจาก Loadcell แปลงเป็นค่าน้ำหนักได้
- สามารถกำหนดค่า Baud Rate ได้ 1200,2400,4800,9600 และ 19200
- สามารถกำหนดสัญญาณการส่งเป็นแบบ Even หรือ None Parity ก็ได้
- ตัวกล่องทำด้วย Stainless Steel

<u>ประโยชน์ในการนำไปใช้งาน (Feature)</u>

- ใช้ตรวจว่า Loadcell ว่าดีหรือเสีย
- ใช้ตรวจวัดความแรง และคุณภาพของสัญญาณที่ออกจาก Loadcell
- ใช้ตรวจสอบการติดตั้งและการกระจายน้ำหนักของแท่นชั่ง
- ใช้ตรวจสอบการทำงานของ Remote Display
- ใช้ตรวจสอบช่องสื่อสาร(Communication Port) ของเครื่องคอมพิวเตอร์
- ใช้ตรวจสอบการทำงานของ โปรแกรมอ่านค่าน้ำหนัก
- ใช้ตรวจสอบการทำงาน และตารางอักษรของเครื่องพิมพ์
- ใช้ตรวจสอบการส่งสัญญาณของหัวอ่านค่าน้ำหนัก (Indicator)
- ใช้ตรวจสอบการรบกวนทางไฟฟ้าจากแหล่งจ่ายไฟ

<u>ลักษณะโดยทั่วไปของ BUDDY-2</u>

ด้านหน้าจะประกอบด้วยปุ่มกดคำสั่ง 6 ปุ่มพร้อมจอแสดงผลแบบ LCD มีแสงในตัว

ปุ่มคำสั่ง	รายละเอียด
ОК	เลือก / ตกลง / ยืนยัน
ESC	ถอยออก / ยกเลิก
仓	เลื่อนขึ้น / เพิ่มค่า
Û	เลื่อนลง / ลดค่า
	เลื่อนไปทางซ้าย / เลื่อนขึ้น
\Rightarrow	เลื่อนไปทางขวา / เลื่อนลง

ด้านบนประกอบด้วย Connector สำหรับต่อกับ Loadcell แบบ Analog และ Digital

PIN	ANALOG	DIGITAL
EX+	EXCITE +	VCC
SG+	SIGNAL +	А
SG-	SIGNAL -	В
EX-	EXCITE -	GND

ด้านซ้ายประกอบด้วย Switch และ Connector ต่างๆ ดังนี้

อุปกรณ์	รายละเอียด
PROTECT SWITCH	Switch Lock หน่วยความจำ (ขึ้น=Lock)
LOADCELL SELECTOR	ปุ่มเลือกชนิดของ Loadcell (กดลง=Analog)
POWER ON/OFF	Switch เปิด/ปิด เครื่อง (ขึ้น=เปิด)
ADAPTOR CONNECTOR	ช่องเสียบไฟเลี้ยง (ขั้วกลาง=ไฟบวก)

ด้านขวาประกอบด้วย Switch และ Connector ต่างๆ ดังนี้

อุปกรณ์	รายละเอียด
LASER	Laser Switch (ขึ้น=เปิด)
PARALELL	สายสัญญาณสื่อสารแบบขนาน
SERIAL	สายสัญญาณสื่อสารแบบอนุกรม

<u>หัวข้อการทำงานในหน้าจอหลัก</u>

หน้าจอรายการหลักจะเป็น รายการคำสั่ง (MAIN MENU) แรกที่จะปรากฏขึ้นเมื่อเปิด เครื่อง ซึ่งจะเป็นตัวเลือกเข้าสู่หัวข้องานแต่ละประเภทที่จะใช้งาน

การดูรุ่นของ Firmware และสถานะของเครื่องสามารถทำได้โดยการกดปุ่ม [ESC] ที่ ตำแหน่งหน้าจอรายการหลัก ซึ่งเครื่องจะแสดงภาพดังนี้

<u>การตรวจสอบ ANALOG LOADCELL</u>

ให้เลือกหัวข้อ "ตรวจสอบLOADCELL" ในหน้าจอรายการหลัก จากนั้นจะปรากฏ ตัวเลือกดังต่อไปนี้

ในส่วนของ ANALOG LOADCELL จะมีหัวข้อแสดงผลการวัด 3 ประเภท คือ

- ค่าน้ำหนัก จะเป็นหน่วยน้ำหนัก ซึ่งได้จากการเทียบค่า (Calibration) โดยมี หน่วยเป็น Kg. หรือ g. แล้วแต่การ Calibrate
- ค่า ADC (Analog to Digital Convert) คือค่าที่อ่านได้จริงจากสัญญาณ Loadcell
- ค่าแรงดันไฟฟ้า จะเป็นหน่วย mV ที่อ่านได้จาก Loadcell มีความละเอียดถึง
 1/1000 ของ mV

โดยในการใช้งานทั้ง 3 หัวข้อนี้ ผู้ใช้จะต้องกดปุ่มเลือกประเภทของ Loadcell ที่อยู่ ด้านซ้ายของตัวเครื่อง แล้วต่อสายสัญญาณของ Loadcell เข้าที่ Loadcell Connector ด้านบนของเครื่อง ภาพที่ได้จากการวัดจะแสดงดังนี้

หน่วยการวัด	การแสดงภาพ
น้ำหนัก	commandor BUDDY3 100 แสดงค่าน้ำหนัก
ค่า ADC	แสดงค่าสัญญาณ ADC = 12458
ค่าแรงดันไฟฟ้า	commandor BUDDY3 0.507 ค่าแรงดันเปฟ้า (mu)

<u>การตรวจสอบ DIGITAL LOADCELL</u>

ให้เลือกหัวข้อ "ตรวจสอบ DIGITAL" ที่อยู่ภายในรายการคำสั่งของ "ตรวจสอบ LOADCELL" ซึ่งจะปรากฏหัวข้อต่างๆ ดังนี้

<u>การกำหนดค่า ADDRESS ของ DIGITAL LOADCELL</u>

เป็นการกำหนดเลขประจำตัวของ Loadcell เพื่อที่จะได้ทราบว่าค่าที่กำลังอ่านนั้นมา จาก Loadcell ตัวใดและอยู่ที่ตำแหน่งใด โดยเมื่อผู้ใช้เลือกหัวข้อนี้ เครื่องจะแสดง ภาพหน้าจอ ดังนี้

ผู้ใช้งานจะต้องทำตามขั้นตอนดังนี้

- 1. กดปุ่มเลือกประเภท Loadcell ด้านซ้ายของเครื่องให้เป็น Digital
- ต่อสาย Digital Loadcell ที่ต้องการตั้งค่าเพียงตัวเดียวเข้ากับ Digital Loadcell Connector ด้านบนของเครื่อง
- 3. เลือก Brand ของ Digital Loadcell ด้วยการกดปุ่มลูกศร ขึ้น/ลง
- 4. เลือกค่าของ Address ที่ต้องการด้วยปุ่มลูกศร ซ้าย/ขวา
- 5. กดปุ่ม [OK] เพื่อยืนยันการทำงาน

<u>การอ่านค่าสัญญาณจาก Digital Loadcell</u>

สำหรับการอ่านค่าสัญญาณ ทำได้โดยเลือกหัวข้อ "READ LOADCELL" ซึ่งอยู่ ภายใต้ หัวข้อ "ตรวจสอบ DIGITAL" อีกทีหนึ่ง โดยเมื่อเลือกหัวข้อนี้ เครื่องจะแสดง ภาพ

ผู้ใช้งานจะต้องทำตามขั้นตอนดังนี้

- 1. กดปุ่มเลือกประเภท Loadcell ด้านซ้ายของเครื่องให้เป็น Digital
- ต่อสาย Digital Loadcell ที่ตั้งค่า Address แล้วทุกตัวเข้ากับ Digital Loadcell Connector ด้านบนของเครื่อง
- 3. เลือก Brand ของ Digital Loadcell ด้วยการกดปุ่มลูกศร ขึ้น/ลง
- 4. ระบุจำนวนของ Loadcell ที่ต้องการอ่านค่าด้วยปุ่มลูกศร ซ้าย/ขวา
- 5. กดปุ่ม [OK] เพื่อยืนยันการทำงาน

การจำลองตัวเครื่องเป็น Digital Loadcell

ในบางกรณี หากต้องการทดสอบหัวอ่าน (Indicator) แบบ Digital ก็สามารถทำได้ โดยการ จำลองตัวเครื่อง BUDDY-3 เป็น Digital Loadcell โดยใช้หัวข้อ "DIGI SIMULATOR" ซึ่งอยู่ภายใต้ หัวข้อ "ตรวจสอบ DIGITAL" อีกทีหนึ่ง โดยเมื่อเลือก หัวข้อนี้ เครื่องจะแสดงภาพ

โดยตัวเลือกต่างๆ มีรายละเอียดดังนี้

หัวข้อ	รายละเอียด
REAL-DIGITAL LC	จำลองเป็น Digital Loadcell ของ Brand ต่างๆ
SEMI-DIGITAL LC	จำลองเป็น Digital Loadcell แบบ Command Mode
SEMI-CONTINUOUS	จำลองเป็น Digital Loadcell แบบ Continuous Mode
SIGNAL MONITOR	ตรวจจับสัญญาณติดต่อสื่อสารของ Digital Loadcell

<u>การทดสอบคำสั่งการควบคุมอุปกรณ์</u>

เป็นส่วนของการทดสอบในการทำงานและการสั่งการของอุปกรณ์ควบคุมการทำงาน โดยเมื่อผู้ใช้งานเลือกหัวข้อนี้ เครื่องจะแสดงตัวเลือกดังนี้

โดยตัวเลือกต่างๆ มีรายละเอียดดังนี้

หัวข้อ	รายละเอียด
I/O BOX (RS232)	ทดสอบ I/O กล่องควบคุมผ่านทาง RS-232
I/O BOX (RS485)	ทดสอบ I/O กล่องควบคุมผ่านทาง RS-485
COMMAND (RS232)	ทดสอบ I/O หัวอ่าน ผ่านทาง RS-232
COMMAND (RS485)	ทดสอบ I/O หัวอ่าน ผ่านทาง RS-485

<u>ส่วนของการส่งสัญญาณ RS-232</u>

้ผู้ใช้งานเลือกหัวข้อในกลุ่มนี้โดยเลือก หัวข้อ "ส่งสัญญาณ RS232"

หัวข้อ	การนำไปใช้งาน	
ส่งสัญญาณน้ำหนัก	ทดสอบเครื่อง PC, ทดสอบโปรแกรม, ทดสอบRemote	
ส่งตาราง ASCII	ตรวจค่ารหัสอักษร, ตรวจความสมบูรณ์ของการต่อเชื่อม	
ทดสอบ PRINTER	ตรวจสอบเครื่องพิมพ์อย่างละเอียด	
ทดสอบ REMOTE	ตรวจสอบ Remote อย่างละเอียด	

ประโยชน์ของหัวข้อต่างๆ ในกลุ่มนี้ประกอบด้วย

การจำลองสัญญาณสื่อสาร RS-232

เป็นการจำลองการส่งสัญญาณค่าน้ำหนักของเครื่องชั่ง ได้หลาย Brand และสามารถ กำหนดเงื่อนไขของรูปแบบสัญญาณได้ โดยเมื่อผู้ใช้เลือกหัวข้อนี้ เครื่องจะเข้าสู่ หน้าจอภาพดังนี้

ในหน้าจอส่วนนี้ผู้ใช้งานสามารถเลือกหมวดคำสั่งโดยการกดปุ่ม ลูกศร ขึ้น/ลง และ สามารถเปลี่ยนแปลงค่าในแต่ละหมวดด้วยการกดปุ่ม ลูกศร ซ้าย/ขวา โดยหมวด คำสั่งต่างๆ มีดังนี้

หมวดคำสั่ง	รายละเอียด	
[1] VALUE	เพิ่มหรือลดค่าน้ำหนักที่จะส่งออก	
[2] PROTOCAL	รูปแบบสัญญาณของหัวอ่านแต่ละ Brand	
[3] BAUD RATE	ค่าความเร็วของสัญญาณ 1200,2400,4800,9600,19200	
[4] PARITY	ค่า Parity Check ของสัญญาณ 8,N,1 หรือ 7,E,1	

[5] DIVISION	ค่าอ่านละเอียดของสัญญาณที่ส่ง 1,2,5,10,20,50,100
[6] DECIMAL	จำนวนจุดทศนิยมของค่าที่ส่ง 0,1,2,3

<u>การส่งสัญญาณค่าตาราง ASCII</u>

เมื่อผู้ใช้งานต้องการส่งค่ารหัสสัญญาณ ASCII ออกทาง Serial หรือ Paralell เพื่อ ทดสอบอุปกรณ์ภายนอกไม่ว่าจะเป็นเครื่องพิมพ์หรือคอมพิวเตอร์ ก็สามารถเลือกได้ จากหัวข้อ "ส่งตาราง ASCII" ภายใต้หัวข้อ "ส่งสัญญาณ RS-232" อีกที เครื่องจะ แสดงภาพดังนี้

ผู้ใช้สามารถเลือกช่องสัญญาณ Serial หรือ Paralell รวมทั้งความเร็ว Baudrate ได้ โดยการกดปุ่ม ลูกศร ขึ้น/ลง และสามารถเลือก Parity ว่าจะให้เป็น 8,N,1 หรือ 7,E,1 ได้โดยการกดปุ่ม ลูกศร ซ้าย/ขวา และเมื่อได้ค่าที่ต้องการแล้วก็เริ่มทำงานโดยการกด ปุ่ม [OK]

<u>การทดสอบการส่งสัญญาณสู่เครื่องพิมพ์</u>

หากต้องการทดสอบว่าการต่อเชื่อมและการส่งสัญญาณออกทางเครื่องพิมพ์ทำได้ สมบูรณ์หรือไม่ก็สามารถทำได้โดยการเลือกคำสั่ง "ทดสอบ PRINTER" ซึ่งอยู่ภายใต้ หัวข้อ "ส่งสัญญาณ RS-232" อีกที เครื่องจะแสดงภาพดังนี้

ผู้ใช้สามารถเลือกช่องสัญญาณ Serial หรือ Paralell รวมทั้งความเร็ว Baudrate ได้ โดยการกดปุ่ม ลูกศร ขึ้น/ลง และสามารถเลือก Parity ว่าจะให้เป็น 8,N,1 หรือ 7,E,1 ได้โดยการกดปุ่ม ลูกศร ซ้าย/ขวา และเมื่อได้ค่าที่ต้องการแล้วก็เริ่มทำงานโดยการกด ปุ่ม [OK]

<u>การทดสอบการส่งสัญญาณไปสู่ Remote Display</u>

หากต้องการทดสอบว่าการแสดงผลของ Remote Display ถูกต้องหรือไม่ก็สามารถ ทำได้โดยการเลือกคำสั่ง "ทดสอบREMOTE" ซึ่งอยู่ภายใต้หัวข้อ "ส่งสัญญาณ RS-232" อีกที เครื่องจะแสดงภาพดังนี้

ผู้ใช้สามารถเลือกความเร็ว Baudrate ได้โดยการกดปุ่ม ลูกศร ขึ้น/ลง และสามารถ เลือก Parity ว่าจะให้เป็น 8,N,1 หรือ 7,E,1 ได้โดยการกดปุ่ม ลูกศร ซ้าย/ขวา และ เมื่อได้ค่าที่ต้องการแล้วก็เริ่มทำงานโดยการกดปุ่ม [OK] (สำหรับ Protocal ที่จะส่ง จะต้องเลือกในหัวข้อ "ส่งสัญญาณน้ำหนัก")

<u>ส่วนของการรับสัญญาณ RS-232</u>

เป็นส่วนที่ใช้ในการตรวจวัดและวิเคราะห์ค่าสัญญาณจากภายนอกว่ามีคุณสมบัติ และมีรายละเอียดอย่างไร ประกอบด้วยหัวข้อดังภาพด้านล่างนี้

ผู้ใช้สามารถต่อเชื่อมกับสัญญาณ Serial RS-232 แล้วให้เครื่องทำการตรวจจับและ วิเคราะห์ได้ว่าสัญญาณที่ส่งมามีค่าความเร็ว Baudrate เท่าใดอัตโนมัติ โดยใช้หัวข้อ "ตรวจค่าBAUDRATE" จากนั้นก็เริ่มทำการบันทึกสัญญาณด้วยคำสั่ง "เริ่มตรวจจับ สัญญาณ" ซึ่งเครื่องจะแสดงภาพดังนี้

เมื่อได้ทำการบันทึกค่าสัญญาณแล้ว ผู้ใช้งานสามารถดูรายละเอียดของสัญญาณได้ จากคำสั่ง "แสดงข้อมูลสัญญาณ" ก็จะปรากฏข้อมูลแสดงให้เห็นในรูปตารางดังนี้

โดยในตารางข้อมูลดังกล่าวจะประกอบด้วย

- 1. ลำดับของตัวอักษรหรือ Byte ที่ของสัญญาณที่เริ่มจับได้
- 2. ค่าของอักษรสัญญาณในหน่วยเลขฐานสิบ
- 3. ค่าของอักษรสัญญาณในหน่วยเลขฐานสิบหก
- 4. รูปอักษรของสัญญาณแสดงด้วยรหัส TIS-17

และหากผู้ใช้งานต้องการพิมพ์ข้อมูลเหล่านี้ออกทางเครื่องพิมพ์ก็สามารถใช้คำสั่ง "พิมพ์รายการที่บันทึก" เครื่องก็จะเข้าสู่หน้าจอที่แสดงด้านล่างนี้

<u>การกำหนดค่าตัวแปรต่าง ๆ ของเครื่อง</u>

สำหรับการตั้งค่าตัวแปรต่างๆ ผู้ใช้งานสามารถเข้าไปกำหนดได้โดยใช้คำสั่ง "ส่วน การตั้งค่าตัวแปร" ซึ่งอยู่ภายใต้คำสั่ง "การกำหนดค่าระบบ" ของหน้าจอรายการหลัก เมื่อเข้าส่วนคำสั่งนี้จะประกอบด้วยตัวแปรต่างๆ เหล่านี้

FUNC	หัวข้อ	รายละเอียด
00	การส่งสัญญาณ Comm.	รูปแบบ Protocal ที่ส่งออกทาง RS-232
01	ความเร็ว Baudrate	ความเร็ว Baudrate ที่ส่งออกทาง RS-232
02	ค่ำ Parity Check	Parity ของสัญญาณ 0=8,N,1 1=7,E,1
03	ระดับค่าน้ำหนักนิ่ง	จำนวนครั้งที่สัญญาณซ้ำแล้วถือว่านิ่ง
04	จำนวนหลักจุดทศนิยม	จำนวนจุดทศนิยม (0,1,2,3)
05	อักษรเริ่มสัญญาณ	อักษรตัวแรกของชุดสัญญาณที่ส่ง
06	ระยะช่วงก่อนน้ำหนัก	จำนวนอักษรจากเริ่มต้นถึงเริ่มค่าน้ำหนัก
07	ความยาวค่าน้ำหนัก	จำนวนอักษรของค่าน้ำหนักที่ส่ง
08	เวลาเปิดBackLight	หน่วงเวลาปิดไฟหน้าจอเมื่อไม่ได้ใช้งาน
09	แสดงค่าอ่านละเอียด	ค่าอ่านละเอียด 1,2,5,10,20,50,100
10	ระดับการกรองสัญญาณ	ค่าการกรองน้ำหนักก่อนแสดง
11	ความเร็วอ่านน้ำหนัก	ความเร็วในการอ่านค่าน้ำหนักแต่ละครั้ง
12	ระดับการขยายสัญญาณ	อัตราการขยายสัญญาณจาก Loadcell
13	น้ำหนักที่ใช้สอบเทียบ	ค่าน้ำหนักที่ใช้ในการ Calibrate
14	ค่าสัญญาณขณะแท่นว่าง	ค่าสัญญาณจาก Loadcell เมื่อแท่นว่าง
15	ค่าสัญญาณน้ำหนักเทียบ	ค่าสัญญาณจาก Loadcell เมื่อ SPAN

<u>การวิเคราะห์ LOADCELL</u>

เป็นการอ่านค่าสัญญาณที่ได้จาก Loadcell ว่างมีความคงที่มากน้อยเพียงใด ซึ่งเมื่อ ผู้ใช้เลือกใช้งานหัวข้อนี้ เครื่องก็จะแสดงภาพหน้าจอดังนี้

เมื่อกดปุ่ม [OK] เครื่องจะเริ่มอ่านค่าสัญญาณจาก Loadcell มาจำนวนหนึ่ง แล้วทำ การตรวจสอบว่ามีลักษณะของความคงที่มากเพียงใด แล้วจึงแสดงผลออกทาง จอภาพ

<u>การเทียบค่าน้ำหนัก (CALIBRATION)</u>

เป็นการบันทึกข้อมูลเพื่อทำการ Calibrate ค่าสัญญาณจาก Loadcell เปลี่ยนเป็นค่า น้ำหนัก เช่นเดียวกับการ Calibrate หัวอ่านค่าน้ำหนักทั่วไป โดยผู้ใช้งานจะต้องทำ การบันทึกค่าสัญญาณ 2 ช่วง คือ เมื่อแท่นชั่งว่าง และเมื่อแท่นชั่งมีน้ำหนักที่ใช้ใน การเทียบ

<u>การเทียบค่าแรงดัน (mV)</u>

เป็นการบันทึกข้อมูลเพื่อทำการ Calibrate ค่าสัญญาณจาก Loadcell เปลี่ยนเป็นค่า แรงดันไฟ ระดับ ไมโครโวลท์ โดยผู้ใช้งานจะต้องทำการบันทึกใน 2 ช่วงสัญญาณ คือ

- 1. ที่ตำแหน่ง 0 mV ทำได้โดย Short ขา Sig+ กับ Sig- แล้วกดบันทึก
- 2. ใส่ตัวต้านทานหรือ Loadcell กดให้สัญญาณออกมากที่สุด แล้ววัดด้วยมิเตอร์ ที่มีความเที่ยงตรงสูง
- 3. บันทึกค่าที่วัดได้

<u>การใช้ LASER ในการตรวจสอบสภาพแท่นชั่งและฐานราก</u>

ปัญหาที่พบมากอีกอย่างในการติดตั้งและใช้งานแท่นชั่งขนาดใหญ่ก็คือความแข็งแรง ของทั้งแท่นชั่งเองร่วมทั้งฐานรากที่รองรับแท่นชั่ง

ลักษณะปัญหาของแท่นชั่ง

- 1 แท่นชั่งแอ่น
- 2. แท่นชั่งบิดตัว
- 3. แท่นซั่งยกลอยจาก Loadcell
- 4. การกดทับ Loadcell ไม่เท่ากัน

ลักษณะปัญหาของฐานราก

- 1. ฐานทรุดตัว
- 2. ความแข็งแรงไม่เท่ากัน

- 3. ระดับไม่เสมอกัน
- 4. เกิดการสั่นเมื่อใช้งาน

